comuni

build the futu

Platform Engineering Meets Composable Platforms:
Building Modern Digital Platforms with ComUnity on Azure

Introduction

Modern enterprises are under pressure to deliver digital products faster, adapt to changing
market demands, and integrate a multitude of systems and services. Traditional monolithic
architectures often struggle to keep pace with these needs due to their rigidity. In response,
platform engineering and composable platform architectures have emerged as key strategies
for building flexible, scalable digital platforms. From an industry perspective, Platform
Engineering focuses on building internal toolchains that accelerate self-service development
workflows (enhancing developer experience, security, and compliance) while composable
architectures champion modular, interchangeable building blocks that can be flexibly assembled
and reconfigured as needed. This document explores the intersection of these concepts and
illustrates how a platform engineering team can build a complex composable digital platform
using the ComUnity Platform — a modern, Azure-based platform tech solution that embodies
these principles.

We begin by examining how platform engineering and composability together enable faster and
more resilient digital platform architectures. We then provide a deep dive into the typical digital
platform architecture which results from a deployment leveraging the ComUnity Platform Tech
solution, detailing how its layers work together to achieve composability. Finally, we discuss the
benefits of this approach and align them with industry guidance from Gartner and the MACH
Alliance" around modular, cloud-native design.

Platform Engineering and Composable Platforms: The Intersection

Platform Engineering is the discipline of designing and building internal platforms (as a product)
to support efficient software delivery. A platform engineering team creates or manages self-
service tools, reusable services, and standardized workflows that development teams use to
build digital platform workloads. This approachis rooted in DevOps principles and aims to reduce
cognitive load on developers by providing paved paths to production within a governed
framework. As Gartner notes, by 2026 an estimated 80% of large engineering organizations will
have platform teams that provide reusable components and tools via internal developer
platforms (IDPs). The goal is to improve developer productivity and consistency by treating the
platform itself as a product — complete with defined capabilities, maintenance, and support.

Composable Platform Architecture refers to building systems as a collection of modular,
interchangeable building blocks. Gartner defines a composable business or system as one made
from “interchangeable building blocks”, where modules can be added, removed, or replaced with
minimal impact on the whole. In technology terms, composability means breaking down

"The MACH Alliance is an independent, non-profit industry body advocating for open, best-of-breed
enterprise technology ecosystems built on Microservices-based, API-first, Cloud-native SaaS, and
Headless principles.

ty

capabilities into independent services or components that communicate through well-defined
APls. Each componentis focused on a specific function (high cohesion) and interacts with others
in a loosely coupled manner. This modularity enables greater flexibility and agility: organizations
can reconfigure or swap components without overhauling entire systems, allowing them to
respond nimbly to new requirements or market shifts. Key aspects of composable architecture
include modular design, interchangeability of components, independent scalability, and the use
of cloud-native technologies to integrate everything.

Bringing the Concepts Together: Platform engineering and composable architecture naturally
complement each other in modern digital platform design. A platform engineering team’s job is
to build and maintain the platform that product teams use — and if that platform is composable,
itmeans the platform itself is built from modular services and enables modularity in the solutions
built on top of it. In practice, this means the platform team curates a set of internal services, APIs,
and tools (the “building blocks”) that application teams can mix and match to assemble digital
products. By applying composable principles, the platform remains flexible and evolvable: new
capabilities can be added as independent services, and unwanted components can be replaced
or upgraded with minimal downstream impact. This intersection empowers organizations with
what Gartner calls “real-time adaptability and resilience” — the platform can quickly support new
business needs or scale to handle surges in demand by virtue of its modular construction. In
summary, platform engineering provides the disciplined approach and governance to create a
reliable internal developer platform, while composable architecture ensures that platform is
made of Lego-like pieces that can be recomposed for varying needs. The resultis a modern digital
platform that maximizes reuse and agility: developers enjoy a self-service “menu” of components
and APIs, and the business enjoys the speed and flexibility of assembling solutions from tested,
reusable parts.

ComUnity Platform Architecture: A Composable Platform on Azure

The ComUnity Platform provides an out-of-the-box composable digital platform foundation,
leveraging Microsoft Azure cloud services under the hood. While ComUnity offers a
comprehensive solution with tools, templates, and infrastructure for building, deploying, and
managing digital solutions, products, and services, this document specifically focuses on the
capabilities related to Composable Platform Architecture. For a complete overview, please refer
to the ComUnity Platform Technical Description: Technical Document. This ComUnity
Composable Platform capability is structured as a layered architecture, where each layer
provides a set of modular capabilities:

¢ Integration Service: Standard API integration via ComUnity APl Gateway (built on Azure
APl Management) to connect any system that offers standard APIls based on modern open
standards (e.g. OpenAPI, OData, HTTP).

o Virtual Entity Service: A ComUnity Virtual Entity model to integrate external data sources
(i.e. external APIs, derived data, etc.) into the platform and expose them externally (using
the platform OData API).

e Data Service: Code-First Data Modelling. Using a code-first object-relational approach
with Entity Framework, platform engineers define data models in code to support data
scenarios that lack direct APl implementations.

https://www.comunityplatform.com/assets/ComUnityTechnicalDescription_2025.pdf

e Core Service: The ComUnity Core Web component, which orchestrates interactions
between the API layer, the data/service layers, and the user interface layer.

e Experience Layer: Support for primary composite user interfaces, via ComUnity
Declarative Ul for low-code scenarios and ComUnity Central Ul for advanced custom-
built React applications. In addition, the ComUnity Platform provides composite
experiences for Analytics, Modern Al-centric interfaces and communications channels.

Each layer is designed as a modular piece of the platform, communicating through well-defined
APls and interfaces. This section provides a detailed technical look at how a platform engineering
team could implement these layers, and how each component contributes to a composable,
cloud-native platform architecture.

Experiences

@_

Declarative Ul ComUnity Central Analytics AlUI

Composition R

04

Platform Core

Integrations [Data B
=
B 8 > =]
._) _’. VE —
\-). = B8 &=
AP| Gateway Virtual Entities Data Services

Internal & External Data Sources

: <l>* y —

Figure 1: High Level overview of Composable Platform Architecture components within the ComUnity Platform

Integration via Standard APls: ComUnity API Management

At the foundation of the ComUnity Platform is a robust API integration layer. ComUnity API
Management is the capability that allows simple integration of any external or internal system as
long asitexposes a“standard” API (e.g. REST, SOAP, OData, GraphQL), while also supporting non-
standard APIs via an HTTP integration type that must be manually configured. In practice,
ComUnity APl Management is built on Azure APl Management (APIM), which acts as a centralized
APl gateway. This provides a single entry point where all services are exposed, secured, and
monitored uniformly. Azure APl Management is a fully managed service that supports the
complete API lifecycle, enabling organizations to publish APIs for internal and external use with
security, rate-limiting, caching, and analytics built in. By leveraging APIM, ComUnity can securely
expose services hosted anywhere (on Azure, another cloud provider or on-premises) as
standardized APIs, abstracting away the complexity of underlying systems from APl consumers.

Through ComUnity APl Management, any system with an existing APl can be onboarded to the
platform: for example, an internal microservice, a database with a REST interface, or a third-party
ERP SaaS application. The platform engineering team sets up these connections in ComUnity API
Manager — this automates the APl connection into APIM, applying consistent policies (for
authentication, authorization, caching, etc.) so that consuming platform see a unified interface.
This automation process also wires in standardised platform Observability and Security etc. This
standardized integration means developers building on the platform don’t need to worry about
the quirks of each system - they simply consume well-documented APIs from the ComUnity
gateway. In short, ComUnity APl Management provides the API-first foundation of the platform,
aligning with composable architecture best practices by making all capabilities accessible as
services. It also supports governance at scale: the platform team can monitor usage, enforce

security, and manage API versions centrally, ensuring quality and consistency across all
integrations.

APls View Al APls JoR-:

@ View and manage all your Azure APIs for this project here. Click on an app to see details or make changes
Name URL

» Expand all

Dynamics365 https:/fcomunityapitestservice.azure-api.netcomcitydynamics365dev 18] + Deployed ~ View details -

Definition method: http Description: Dynamics 365 endpoint

Operations:

Method Endpoint Description

GET incidents Incidents
(®) Add an Azure AP

Figure 2: ComUnity Platform Toolkit APl Management Ul

Integrating Legacy and Non-Standard Systems: ComUnity Virtual Entities

Not all systems offer modern APIs out of the box — many legacy applications, databases, or
proprietary platforms might use non-standard protocols or none at all. To incorporate these into
a composable platform, ComUnity uses a Virtual Entity model. A ComUnity Virtual Entity acts
as an abstraction layer that represents any data source that has been wired into the platform (i.e.
standard APIs, legacy APIs, data services, etc.) as if it were a native component, even if the source
system is non-API or legacy. This concept is similar to the “virtual tables” or “virtual entities” in
Microsoft Dataverse, which “enable the integration of data residing in external systems... by

representing that external data as tables in the platform, without data replication”. AVirtual Entity
allows these data sources, or any aggregation from multiple sources, to be exposed in the same
way as the data service's entities. This also allows the platform authentication, authorization,
caching, etc. to be applied to the virtual entities. The virtual entities are exposed via the same
OData API as the data service entities (see below).

In ComUnity, a Virtual Entity essentially serves as an adapter: the platform engineering team
defines an entity that maps to a legacy system’s data structure or operations, and implements a
provider that knows how to communicate with that system (e.g. via SQL queries, file exchange,
legacy protocol, or any custom integration).

The Virtual Entity layer allows ComUnity to bring in data from external sources without forcing a
migration or extensive custom code in each consuming app. For example, if there is an old ERP
system without a REST API, the platform team could create a virtual entity that connects to the
ERP’s database or exposes its functionality through a script. This virtual entity would appear to
ComUnity’s other components just like any other data source or service — accessible via a
standardized APl or query interface —despite the underlying integration being custom. The benefit
of this model is a consistent developer experience: application teams using the platform can
query or manipulate the legacy data through ComUnity’s standard interfaces, unaware of the
complexity hidden behind the scenes. It “seamlessly represents external data... without
replication...and without extensive custom coding” in each app, which simplifies integration and
reduces duplication of effort.

By using the ComUnity Platform Toolkit, the platform team encapsulates all of this in the
ComUnity Virtual Entity definition, so that once it’s set up, the external system behaves like
another module in the composable platform. This aligns with the composable principle of
interchangeability — the legacy system could eventually be replaced with a modern alternative,
and the virtual entity adapter could be swapped or turned off, without breaking the consumers of
that functionality. In summary, ComUnity’s Virtual Entity model extends the reach of the platform
to any system (APl or not), thus ensuring that even archaic components become part of the
composable architecture. It bridges old and new, allowing the organization to modernize
gradually and consistently.

Diagram List All entities) nd {
9 All entities . g/ e Properties of Booking

M [B Auth (Platform entity) Name
25} Booking

[F [BaseEntity

Entity Class

fee] (1 B BaseNotification
[HE BaseTemporalEntity
[
Bookingld (int)
Description (string)
BookingDate (datetime]
Created (datetime)
Modified [datetime)

IsDeleted (bool)

®

B BroadeastNotification

]

B ConsentClause (Platform entity)

& Demo

=

]

B DepartmentCopy

public class BookingController
& item System.Web.Http.OData.ODataControl ler

2]

Figure 3: A Virtual Entity built and managed within the ComUnity Platform Toolkit.

Where APl Management and Virtual Entities handle data exposed by existing systems, the
ComUnity Data Services layer addresses scenarios where no suitable APl or external data source
exists. Atits core, this layer uses a code-first approach—developers define domain entities as C#
classes, which are then mapped to relational tables via Entity Framework (EF). By treating data
models as first-class code artifacts, platform engineers can express complex domain
relationships (one-to-many, many-to-many, inheritance hierarchies) directly in code rather than
relying on database-first schema design. EF’s conventions and data annotations (or the fluent
API) automatically translate these classes into normalized schemas, creating tables, keys, and
constraints without requiring manual SQL.

Once entities are defined, EF’s migrations feature tracks changes to the data model over time and
generates incremental schema updates so the underlying database remains in sync with evolving
business requirements. When a new property or entity is added to a domain class (for example,
adding a “ServiceRequestPriority” lookup table or introducing a new “CitizenFeedback” entity),
developers use the ComUnity Platform to make these changes and the underlying toolset
compares the current model snapshot to the previous one, emits a schema diff, and appliesitto
the database. This automated schema evolution streamlines maintenance: each version of the
ComUnity Data Services model is persisted in a database alongside application code, ensuring
that “as-code” principles apply to persistent storage as well.

Beyond simple CRUD operations, the Data Services layer supports composite entities and rich
querying. Developers can define projection classes or LINQ queries that join multiple tables into
a single shape (e.g., combining a “BuildingPermit” entity with “ApplicantDetails” and
“InspectionRecords” into a PermitOverview projection). These capabilities allow the platform to
retrieve complex, aggregated data in a single round-trip. Moreover, global query filters and soft-
delete conventions can be applied at the model level (for instance, filtering out “Inactive”
municipal accounts automatically) without scattering conditional logic throughout the
codebase. Indexes, column types, and relationship behaviours (cascade deletes, restricts) are
likewise configured via the code model, ensuring consistency and avoiding schema drift.

In operation, platform core or clients, consume Data Service endpoints just as they would any
standard API. The platform exposes Data Service contexts through data-service endpoints (e.g.,
OData or REST endpoints generated by the platform), which provide standardized, paged, and
filtered access to domain data that didn’t previously existin an APl. When a Ul needs to render a
“City Asset Dashboard,” Core Web can invoke Data Services to pull asset records, join with
inspection logs, and return a composite JSON payload—delivering a complete picture in one call.
If downstream services or reporting tools require this data (such as Power Bl dashboards), they
consume the same Data Services endpoints, ensuring consistency across channels. In tandem
with Virtual Entities, which bridge legacy data, the Data Services layer fills gaps in modern data
needs, enabling a truly composable data fabric that underpins all interactions

/O ° Properties of Case

B BaseTemporalEntity
Inherits from Entity

BaseEntity

JpdateOperation Entity Set Name

Case

Edit Table Security
Change who is allowed to see, edit and delete data in this
table

Custom Control Type Definitions
= Caseld Add custom control types that will be available for use on
the pages and screens.

Table Name

Temporal (History) Table

None

Figure 4: ComUnity Platform showing Data Service designer - including data schema and advanced configuration
settings.

ComUnity Core Web: Orchestrating the Platform’s Layers

At the heart of the ComUnity Platform is ComUnity Core Web, which serves as the central
orchestration and execution engine. This component manages the interactions between the API
layer, the data/virtual entity service layer, and the user interface layer. In essence, ComUnity Core
Web is responsible for implementing the platform’s routing logic and ensuring that when front-
end applications call the platform, the calls are routed to the correct back-end services or data
sources and combined appropriately. Another important capability of the Core Web is to manage
detailed tracing and metrics signals which are sent to the Platform Observability service.

One can think of Core Web as a facade or backend-for-frontend (BFF) that sits between the user
interfaces and the myriad of underlying APls and data entities. When a request comes in (for
example, a user viewing a customer profile in a Ul), Core Web might need to gather data from
multiple sources: a CRM system via a standard API, a legacy billing system via a virtual entity, and
perhaps some internal Data Service. Rather than making the front-end call each service
individually, the Core Web layer can orchestrate a composite call —it calls the necessary APls on
the client’s behalf, applies any business rules or transformations, and returns a consolidated
result. This improves performance (fewer round trips from the client) and encapsulates
complexity away from the Ul. It also centralizes business logic, enforcing consistency across
different channels (e.g. if multiple Uls or services use the same data or rules, they all go through
Core Web).

The Core Web is on the network edge and is the central hub that connects clients from the
Internet and services in the backend. Itis a layered architecture built on http.sys, the kernel driver
installed by IIS. Incoming requests go through layers like security, caching and observability
before the core switches the requests for work to the relevant components.

The Core Web:
e integrates and leverages the REST architecture of the Web with support for cache
validation and expiration, download resume, long polling and video playback.
e parses OData requests, analyse and modify them according to the requirements for
security and data governance and re-renders them out for the destination services.

e also includes an adaptative media service that includes hosting icon libraries, a file
manager and a composable image transformation pipeline.

The key is that Core Web adheres to the platform’s API-first approach: it exposes its own set of
APls or endpoints that the Uls call, and under the hood it consumes the lower-level APIs (the ones
managed by ComUnity APl Management or exposed via virtual entities or Data Services). This
layered APl approach follows the general three-layer architecture (presentation — BFF -
services/data) that helps separate concerns: the Ul layer deals only with Core Web’s API, and the
Core Web handles interfacing with data and integration layers. Such separation ensures that “the
Ul... never talks directly to the data layer”, which is a good practice for maintainability and
security.

This design patterns implemented by the Core Web follow the orchestration principle of
composable systems (as highlighted by Gartner’s composable business, which emphasizes
orchestration of modular parts). Should any component change or be replaced, the Core Web
layer’s orchestration logic can be updated, while the contract it provides to the Uls remains
consistent — again underscoring adaptability.

Composite User Interfaces: Declarative and Central Uls

The top layer of the ComUnity Platform is the experience layer, where end-user applications and
digital experiences are constructed. A hallmark of a composable platform is that it supports
flexible, composite Uls — applications can be assembled from modular Ul components and
different frontend approaches depending on the need. ComUnity achieves this by offering two
complementary ways to build user interfaces on the platform:

e ComUnity Declarative Ul: alow-code, configuration-driven approach for building simple
or standard user interfaces with minimal coding.

e ComUnity Central Uls: a framework for building advanced, fully custom user interfaces
(using React) when bespoke functionality or complex Ul design is required.

ComUnity Declarative Ul (Low-Code Experience). The Declarative Ul capability enables faster
delivery of applications by allowing developers (or even power users) to create interfaces through
a declarative schema or visual builder, instead of hand-coding every component. In addition,
because the Declarative Uls are generated at runtime from platform metadata and the underlying
data-service schema, any updates to the data model or metadata instantly propagate through
every interface without additional coding. This accomplished by using the ComUnity Platform
Toolkit Ul designer tool which manages the configuration that defines forms, views, and Ul logic
(which the platform then renders as a web or native interface). This Declarative Ul approach is
drag-and-drop or form-driven, providing pre-built Ul components (forms, lists, buttons, etc.) that
can be bound to data sources and APIs easily via the Toolkit. This low-code approach “allows you
to build applications quickly using reusable components” and focus on business logic rather than
boilerplate Ul coding. In ComUnity, the platform engineering team uses this library of standard Ul
components that are automatically connected to ComUnity’s data and API layers. For example,
a developer could configure a “Customer List” page by selecting the Declarative Ul list
component and binding it to the Customer OData APl endpoint — without writing custom AJAX
calls or state management code. The platform’s Core Web and API layers handle the data
interactions, so the low-code Ul just declares what to show and how. This approach greatly

speeds up development for common application pages or internal tools, and ensures
consistency in look-and-feel since the components are standardized.

Because it’s declarative, this Ul approach also makes changes easier —updating a field or adding
a new data element to a page can be as simple as changing the configuration. It embodies the
composable idea at the Ul level: Uls are assembled from modular pieces (Ul widgets and data
bindings) that the platform provides. Another advantage is that non-engineering staff (like
designers or business analysts) might be able to construct or tweak simple Uls, since it doesn’t
require deep coding expertise. This frees up skilled developers to focus on more complex tasks,
aligning with a key benefit of low-code and high-code integration: “non-developers can build
front-end features in low-code while developers focus on high-code elements”, enabling efficient
collaboration.

Screen View 5
Properties of List
Screen Structure List Navigation
Screens O Select controls to edit properties Drag and drop navigation onto your selected list RealT:
. CasesNewTypeList
(B Administration Navigation Page Form
= r Layout Type
New Case =:
Grid
New Case Cases Logg
— Icon
E i Role Name
I Log a new Case Select.
[Database List e
) Data Path = /CaseType
[CaseType
Query
Deleted eq null
Item Title
{{= Name J}
Iter Detail
Target URL
CaseAddPage?CaseType={{= CaseTypeld
Additional screens. UINKCaseAddPage?CaseType={[= CaseTypeld |
Add Business £83 More Settings

Figure 5: ComUnity Platform Toolkit Declarative Ul Designer

ComUnity Central Uls (Custom React Applications). Not every application or feature can be
built with low-code tools - often, customer-facing applications require bespoke user
experiences, unique workflows, or heavy client-side logic that only a custom-coded application
can provide. For these needs, ComUnity provides the ComUnity Central Ul approach: essentially
a way to build fully custom desktop-centric front-end applications that still integrate seamlessly
with the ComUnity Platform. In practice, a team of developers can use this React-based Ul
Project to build a dynamic web application, and connect it to ComUnity’s APIs for all data and
actions. Because ComUnity is API-first and headless, a custom Ul can leverage the platform’s
capabilities just by making HTTP calls via Core Web or APl Management endpoints. This is
analogous to a headless architecture where the front-end is decoupled from back-end services
—the ComUnity platform acts as the back-end (with all business logic and data access behind
APIs), and the React app is a headless front-end consuming those services.

The advantage of offering this route is maximum flexibility: developers have full control over the
user experience, code structure, and can incorporate any Ul libraries or advanced client-side

10

logic as needed. They are not constrained by the templates of the low-code tool. In ComUnity’s
case, these ComUnity Central Uls might be used for public-facing digital products or complex
internal portals that demand rich interactivity. The ComUnity Platform Toolkit provides this
custom web Ul as an option in each ComUnity Platform project.

The existence of both low-code and high-code options in ComUnity underscores a best practice
in modern architecture: use the right tool for each component. Simple form-over-data
applications can be delivered rapidly with the low-code declarative Uls, while complex screen
designs workflows get the full power of custom development — and both can co-exist. Indeed,
combining low-code and high-code solutions “creates a flexible, scalable architecture
supporting speed and control”, leveraging the rapid development of low-code with the unlimited
customization of high-code.

Composite Ul in Action: It’s worth noting that ComUnity’s support for declarative and custom
Uls means a single digital solution could consist of multiple Ul modules. For instance, a
company’s customer-facing native applications, with simple interactive elements, could be built
with Declarative Ul (where speed and consistency are key) and a highly tailored and complex
internal dashboard delivered via a ComUnity Central Ul for a polished experience. Because both
types of front-end talk to the same back-end platform, they remain in sync and reuse the same
underlying services. This reflects the idea of composite Uls and micro-frontend architecture,
where different parts of the interface may be powered by different modules or teams, yet come
together seamlessly for the end-user. ComUnity enables this by ensuring all Ul components -
whether low-code or custom - interact with the platform through stable APIs and common
services (managed by Core Web). This decoupling of front-end and back-end aligns with MACH
(Microservices, API-first, Cloud, Headless) principles: the platform is headless and API-driven,
so multiple front-end experiences can be composed on top of it as needed.

Aligning with Composable Architecture Best Practices (Gartner and MACH)

The design of the ComUnity Platform and the approach of the platform engineering team are
closely aligned with industry best practices for composability, modular architecture, and cloud-
native design. Both Gartner’s architectural principles and the MACH Alliance’s technology
principles are evident in this approach:

e Microservices-Based: ComUnity’s architecture divides functionality into services — from
APl management to core orchestration to Ul components - rather than one monolithic
application. This microservices orientation follows the MACH philosophy of
independently deployable components. It brings benefits in deployment flexibility and
scalability, as microservices “enable greater flexibility in terms of deployment and
scalability” compared to monoliths. Each service (e.g. APl gateway, a virtual entity
connector, or a Ul module) can be scaled or updated on its own, improving resilience and
resource usage.

e API-First: Every capability in ComUnity is exposed via APls, making the platform
consumable by any application or service. By treating APIs as first-class products, the
platform ensures loose coupling between components — internal modules communicate
through standard API contracts, and external applications use the same contracts. This
aligns with both MACH (API-first principle) and general cloud-native best practices. API-
first design allows easier integration and reusability, since “interoperability [is] simplified

11

through APIs, reducing complexity and facilitating easier maintenance”. In ComUnity, the
APl Management layer and Core Web together enforce the API-first approach for all
interactions.

Cloud-Native and SaaS: The platform is built on Microsoft Azure services, leveraging fully
managed offerings like Azure APl Management, serverless functions, and scalable
databases. This means ComUnity inherently benefits from cloud-native features: elastic
scalability, high availability, and managed security. Cloud-native design (the “C” in MACH)
also implies using containerization or serverless deployments, infrastructure as code,
and continuous deployment pipelines — all part of the platform engineering toolkit for
ComUnity. The resultis a platform that can scale on demand and leverage the latest cloud
innovations (for example, adding a new service is as easy as deploying another Azure
Function or container). It also supports a DevOps culture where infrastructure and
services are treated as configurable components in version control, enabling rapid
iteration without sacrificing stability.

Headless (Decoupled Presentation): ComUnity’s separation of the experience layer
(Declarative Ul and ComUnity Central Uls) from the underlying services exemplifies a
headless architecture. The platform provides rich capabilities via APIs and does not
hardwire them to any one user interface. This means new channels or Uls can be added
without modifying core services — for instance, a mobile app or an loT device could
interact with ComUnity’s APIs just as well as the web Uls do. Headless, API-driven
platforms are more adaptable to future needs, as they allow organizations to deliver
consistent functionality across web, mobile, voice, or any interface by reusing the same
composable services. As one MACH guideline puts it, this “enables highly flexible
applications that can easily adapt to changing business needs”.

o Modularity and Autonomy: Gartner’s principles of composable businessinclude
modularity and autonomy. In ComUnity, each component or service can be
considered a packaged business capability (to use a Gartner term) that performs
a distinct business function (e.g. identity management, a payment processing
module, a content management microservice). These modules are autonomous
in that they can be developed and governed by the platform team (or sub-teams)
independently, as long as they conform to the platform’s integration standards.
This modular structure means the organization can innovate or change one part
(say, swap out a legacy payment service for a new one) without destabilizing the
entire platform. It also allows different teams to work in parallel on different
components, improving development velocity. The platform engineering team’s
role is to maintain the orchestration (through Core Web) and discovery of these
capabilities (via ComUnity’s Toolkit or documentation), which mirrors Gartner’s
composable principles of orchestration and discovery alongside modularity.

Governance and Security by Design: An often overlooked best practice is ensuring that
a composable platform doesn’t become a “wild west” of microservices. Platform
engineering imposes governance — in ComUnity, common security services (possibly
Microsoft Entra integration, centralized identity) and compliance checks can be baked
into the platform. For example, all APIs in the APl Management layer might enforce
Managed Identity, OAuth 2.0 and log audits by default, and all microservices might be

12

required to use the platform’s libraries for observability. This standardization means
higher quality and security across the board. Gartner notes that composable
architectures still require discipline and careful design to reap benefits. The ComUnity
approach, with a dedicated platform team curating the building blocks, ensures that the
composability does not compromise on enterprise-grade requirements.

In summary, the ComUnity Platform is a practical realization of modern architectural best
practices. It adheres to the MACH Alliance’s call for microservices, API-first, cloud-native, and
headless solutions, which together enable a future-ready, scalable, and modular enterprise
architecture. It also follows Gartner’s vision of composable enterprises by delivering technology
as interchangeable modules orchestrated into a coherent whole, thereby offering both resilience
and agility.

Benefits of the ComUnity Platform Engineering Approach

Adopting a composable platform approach with a platform engineering led solution/platform like
ComUnity yields numerous tangible benefits for the organization:

Speed of Delivery: Teams can deliver new capabilities faster by assembling existing
components rather than building from scratch. Reusable services and low-code Uls
significantly cut development and testing time. In fact, adopting a composable platform
approach has been shown to “reduce development and publishing time, resulting in cost
savings and faster time-to-market”. With ComUnity, launching a new digital service might
be as simple as composing a few APIs and a declarative Ul page — a process that can
happen in days instead of months. This speed is a direct competitive advantage in
responding to market opportunities.

Scalability: Each component of the platform can scale independently according to load,
which optimizes resource use and ensures performance under increasing demand. For
example, if API traffic spikes, Azure APl Management can scale out gateways without
affecting the Ul components, or a particular microservice can be replicated across more
instances. This independent scaling of components allows fine-grained control of
capacity and cost. Additionally, being cloud-native, ComUnity automatically benefits
from Azure’s global infrastructure — services can be scaled up, scaled down, or
distributed across regions with minimal effort. Scalability is built in by design rather than
as an afterthought.

Improved Quality and Consistency: By centralizing common functionality, enforcing
standards and providing proven patterns, the platform reduces errors and
inconsistencies across projects. Developers use vetted building blocks that have already
been tested and optimized by the platform team. This leads to more reliable applications.
Moreover, the clear separation of concerns in a composable architecture means each
service/component has a well-defined responsibility, making it easier to maintain and
improving code quality. As one expert noted, the composable approach fosters high-
quality components and simplifies integration with diverse systems. Issues can be
isolated and fixed in one module without ripple effects, resulting in more stable software
over time. The ComUnity Platform also provides integrated observability, deployment
templates, and self-service management of distinct environments (such as "DEV," "QA)"

13

or "PROD") that typically support testing, quality assurance, or CI/CD workflows - further
boosting the quality of delivered applications.

e Modularity and Reuse: ComUnity’s design epitomizes modularity — functionality is
packaged into discrete units (APls, services, Ul modules) that can be reused in different
contexts. This modularity yields extreme flexibility: new solutions can be composed by
mixing and matching existing modules like Lego blocks. It also future-proofs the
ecosystem; as business needs evolve, the platform can be extended by adding new
modules without rewriting the entire system. Gartner predicts that organizations
prioritizing such composability will significantly outpace competitors by being able to
adapt rapidly. Additionally, reuse reduces development effort and technical debt - if an
inventory service or identity service already exists in the platform, every new application
just calls it instead of reinventing it. This not only speeds up projects (as noted in speed
benefits) but also ensures consistent behavior enterprise-wide.

o Adaptability and Agility: Perhaps the greatest benefit of a composable platform
engineering approach is the ability to respond to change. In uncertain and fast-changing
business environments, having a platform thatis “designed for real-time adaptability and
resilience” is invaluable. ComUnity allows the enterprise to rapidly incorporate new
technologies or integrate new partners — for example, adopting a new Al-based service
might be as simple as plugging its APl into the platform. If a component becomes
obsolete, it can be replaced by a new implementation (behind the same API interface)
without disruption. This agility extends to scaling up successful innovations or spinning
down experimental features that didn’t pan out. One IT leader described it well: modular
composability lets you “seize new opportunities quickly while scaling up after initial
traction,” unlike brittle monoliths that are inflexible. In short, the platform can evolve as
fast as the business strategy does, which s a critical advantage for digital transformation.

Conclusion

The convergence of platform engineering and composable architecture, as demonstrated by the
ComUnity Platform on Azure, provides a powerful model for building modern digital platforms. By
treating the platform as a product and incorporating modular, API-driven design, enterprises can
achieve afoundation thatis simultaneously stable and dynamic. Platform engineering disciplines
ensure that developers have a frictionless path to deliver software (with built-in security,
compliance, and tools), while composable design ensures the resulting systems are flexible
assemblies of interoperable parts rather than unwieldy monoliths.

Using the ComUnity Platform, organizations can integrate virtually any system —old or new — and
offer those capabilities as reusable services to be leveraged across multiple channels and
applications. The dual support for low-code declarative Uls and high-code custom Uls means
that the platform can cater to both rapid business-driven development and advanced engineering
needs in one ecosystem. This approach aligns with the highest standards recommended by
thought leaders like Gartner (with its emphasis on modularity and orchestration) and the MACH
Alliance (microservices-based, API-first, cloud-native, headless solutions).

In conclusion, a composable platform engineered with the ComUnity Platform approach
empowers enterprises with speed, scalability, quality, modularity, and adaptability. It shortens
time to value for new digital initiatives, scales effortlessly with demand, maintains high reliability

14

through standardized components, encourages reuse and innovation, and adapts to change with
minimalfriction. As digital business needs continue to evolve, such a platform provides the agility
to not only keep up with change but to harness it as a competitive advantage. Organizations that
invest in platform engineering with composability in mind today are positioning themselves to
innovate faster and respond smarter to the challenges of tomorrow’s digital economy.

	Platform Engineering Meets Composable Platforms: Building Modern Digital Platforms with ComUnity on Azure
	Introduction
	Platform Engineering and Composable Platforms: The Intersection
	ComUnity Platform Architecture: A Composable Platform on Azure
	Integration via Standard APIs: ComUnity API Management
	Integrating Legacy and Non-Standard Systems: ComUnity Virtual Entities
	ComUnity Core Web: Orchestrating the Platform’s Layers
	Composite User Interfaces: Declarative and Central UIs

	Aligning with Composable Architecture Best Practices (Gartner and MACH)
	Conclusion

